Electrospray Mass Spectrometric Evidence of Calixarene *p*-Quinone Methide Formation

Jean-Bernard Regnouf-de-Vains,* Sandrine Berthalon and Roger Lamartine

Laboratoire de Chimie Industrielle, CNRS ESA 5078, Université Claude-Bernard Lyon I, 69622, Villeurbanne, France

Positive or negative mode electrospray mass spectrometry of various types of tris(*p-tert*-butyl)calix[4] arenes with an active methylene group at the upper rim resulted in most cases in the detection of the highly reactive tris(*p-tert*-butyl)calix[4] arenemono(*p*-quinonemethide). © 1998 John Wiley & Sons Ltd.

KEYWORDS: calix[4] arenes; p-quinone methides; electrospray mass spectrometry; elimination reaction

INTRODUCTION

Calixarene tetrol species substituted at the para position by an active methylene group have been synthesized in recent years in order to access more elaborate structures. Gutsche and co-workers1 introduced at the upper rim of the calix[4] arene tetrol, by means of an exhaustive or controlled Mannich reaction, four or one (dimethylamino)methyl substituents which allow, after a preliminary N-alkylation, the amino group to be replaced by various substituents. In a different way, Ungaro and co-workers² developed a direct soft electrophilic substitution process involving tin(IV)chloride and chloromethyl octyl ether, affording the tetra-p-(chloromethyl)calix[4]arene, which was finally transformed into the water-soluble phosphonate. These apparent substitution reactions involve a probable quinonemethide route,' i.e. nucleophilic additions on a highly unstable 4-methylenecyclohexa-2,5-dien-1-one calixarene derivative.3 We demonstrate in the present paper that this intermediate can be generated in its protonated or deprotonated form by electrospray mass spectrometry (ESMS).

We recently described⁴ the introduction of various active methylene groups at the upper rim of the *tris(p-tert*-butyl)calix[4]arene (1) involving, for some of them, procedures adapted from the above-mentioned literature. Species 2–8 (Scheme 1) thus synthesized were fully characterized, excepted the amine 4, which did not give a correct elemental analysis. This observation, corresponding to a loss of nitrogen, was correlated with the possible elimination of NH₃, giving probably some tris(*p-tert*-butyl)calix[4]arenemono(*p*-quinone methide) (QM) during the measurement. This quinone methide

E-mail: regnouf.de.vains@cdlyon.univ-lyon1.fr

was not visible by ¹H or ¹³C NMR analysis of 4, but was perfectly detected by ESMS which was suspected to generate it under the conditions of analysis (Table 1).

In both the positive (ionizing agent HCO₂H) and negative modes (ionizing agent aqueous NH₃), this technique showed that QM was easily generated from 2-7, and that at relatively high cone voltages (60-80 V) the same profile was obtained for most species. It was characterized in the positive mode by a peak at m/z 605.4 $([QM + H]^+)$, followed by a succession of deterbutylated fragments at m/z 549.3, 493.3 and 437.3; the presence of other peaks at m/z 587.4, 531.4, 475.0 and 419.3 was explained by the loss of H₂O from the above-mentioned species. In the negative mode, it appeared as a single peak at m/z 603.4 ([QM - H]⁻), without fragmentation. The probable mechanisms of these ESMS-induced elimination reactions, given in Fig. 1, show that a pure quinone methide subunit can be expected in the negative mode.

The monomethyl species 9, obtained by catalytic reduction of the corresponding monoformylcalixarene,⁵ was used to calibrate our analyses. It displayed in the negative mode a peak at m/z 605.5 attributed to the expected monophenate anion. The azide 3 displayed at low and medium cone voltages (-25 and 60 V) a lowintensity peak at m/z 621.4, which was attributed to the corresponding amine, suggesting that some reductive decomposition occurs during the analysis. Even at high voltage, the nitrile 8 did not give any elimination peak, reflecting as expected the stability of the C—C(N) bond towards further transformations.¹

Scheme 1

^{*} Correspondence to: J.-B. Regnouf-de-Vains, Laboratoire de Chimie Industrielle, CNRS ESA 5078, Université Claude-Bernard Lyon I, 69622 Villeurbanne, France

Table 1. ESMS data for calixarenes 2–9 at different cone voltages		
Formula	Molecular mass	Mass profile (m/z) relative intensity $(\%)$, ion)
$C_{41}H_{49}O_{4}CI$ (2)	641.2	- 20 V: 639.4-641.5 (100) [2 − H] ⁻
71 70 7 ()		-60 V: 603.5 (100) [QM - H]-
$C_{41}H_{49}N_3O_4$ (3)	647.9	-25 V: 646.6 (100) [3 - H] ⁻ ; 621.4 (10) [4 - H] ⁻
		-60 V: 603.4 (100) [QM - H] ⁻ ; 646.5 (10) [3 - H] ⁻ ; 621.4 (10) [4 - H] ⁻
$C_{42}H_{49}NO_4$ (8)	631.9	-40 V: 630.4 (100) [8 - H] ⁻
		-120 V: degradation
$C_{41}H_{50}O_{4}$ (9)	606.8	$-60 \text{ V}: 605.5 (100) [9 - \text{H}]^-; 591.5 (10) [9 - \text{CH}_3]^-; 549.4 (10) [9 - (\text{Bu}^t)]$
$C_{41}H_{51}NO_4$ (4)	621.9	+20 V: 622.5 (100) [4 + H] ⁺ ; 605.4 (80) [QM + H] ⁺
		+60 V: 605.4 (100) [QM + H] ⁺ ; 549.4 (85); 493.4 (45)
		+80 V: 605.4 (10) [QM + H] ⁺ ; 587.4 (10); 549.4 (10); 531.4 (10);
		493.4 (40); 475.0 (10); 437.2 (100)
$C_{47}H_{63}NO_{6}$ (5)	738.0	+40 V: 738.8 (100) [5 + H] ⁺
		+80 V: 738.6 (45); 605.4 (100) [QM +H]+; 549.4 (75); 493.4 (45)
$C_{43}H_{55}NO_4$ (6)	649.9	+25 V: 651.2 (100) [6 + H] ⁺
		+60 V: 651.2 (50); 605.4 (100) [QM +H]+; 549.4 (30)
		+110 V: 651.2 (10); 605.4 (30) [QM +H]+; 587.4 (15); 549.4 (10);
		531.4 (30); 493.4 (15); 475.0 (30); 437.2 (70); 419.3 (100)
C ₅₉ H ₆₄ O ₄ PCI (7 , CI)	868.0	+50 V: 867.6 (100) [7] ⁺
		+80 V: 867.6 (100); 605.4 (5) [QM +H]+; 587.4 (5); 549.4 (25);

According to Neureiter,^{3c} addition of NEt₃ to 2 should lead to the quantitative formation of QM. This reaction was followed by ¹H-NMR in CDCl₃. The CH₂Cl resonance signal disappeared after addition of 1 equiv. of base, while the aromatic pattern was strongly modified, confirming the formation of a new species. Nevertheless, unambiguous specific methide proton signal did not clearly appear in the 5.50-6.20 ppm region.⁶ Attempts to generate a stabilized variant of this quinone methide entity for a specific mass analysis⁷ and the development of a crystallographic approach, failed until now.

EXPERIMENTAL

531.4 (5); 493.4 (40); 437.2 (30); 263.3 (P(C₆H₅)₃ + H]⁺

To prepare 5,11,17-tris(p-tert-butyl)-23-methylcalix[4] arene (9), a mixture of (p-formyl)tris(p-tert-butyl)calix [4] arene (0.25 g, 0.4 mmol), 5% Pd/C (0.03 g) and Na₂SO₄ (0.5 g) in 15 ml of EtOH was stirred at room temperature under H₂ overnight. The solid was filtered over Celite and rinsed with warm EtOH and CH₂Cl₂. The filtrates were evaporated to dryness and the residue was recrystallized from CH₂Cl₂-MeOH to give 9 (0.2 g;

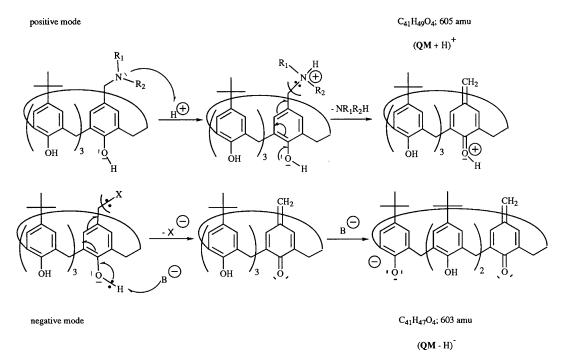


Figure 1. Schematic representation of the formation of calixarene quinone methide analytes in ESMS experiments.

80%). M.p. $349\,^{\circ}$ C; $\lambda_{\rm max}$ (CH₂Cl₂)/nm 279.5 (ϵ /dm³ mol⁻¹ cm⁻¹ 10 600), 286.0 (sh, 8500). IR (KBr): 3140 (OH), 2970 (CH), 1200 cm⁻¹ (C—OH). ¹H NMR, δ (CDCl₃ + TMS, 300.133 MHz, J values in Hz): 1.24 (s, 9H, Bu'); 1.28 (s, 18H, Bu'); 2.18 (s, 3H, Me); 3.54–4.29 (AB, $J_{\rm AB}$ = 12.8, 8H, bridge CH₂); 6.89 (s, 2H, Ar); 7.07 (s, 4H, Ar); 7.12 (s, 2H, Ar); 10.32 (s, 4H, OH). ¹³C NMR, δ (CDCl₃ + TMS): 20.70 (Me); 31.46, 31.54 (Me, Bu'); 32.34, 32.58 (bridged CH₂); 34.07, 34.12 (C, Bu'); 125.71, 125.94, 126.12, 129.61 (3,5-Ar); 127.48, 127.79, 128.03, 128.38, 131.22, 144.50, 144.57, 146.35, 146.68,

146.83 (2,6-Ar, 4-Ar, 1-Ar). Found: C, 79.53; H, 7.85; O, 10.44. Calculated for $C_{41}H_{50}O_{4}$, 0.2 $CH_{2}Cl_{2}$ (623.83): C, 79.32; H, 8.14; O, 10.26%.

Mass spectra were obtained with a Platform Micromass apparatus (Service Central d'Analyse, CNRS, Solaize, France). Positive mode ionization profile of quinone methide (QM): m/z 605.4 [QM + H]⁺; 549.4 [QM - Bu^t + H]⁺; 493.4 [QM - 2Bu^t + H]⁺; 437.2 [QM - 3Bu^t + H]⁺; 587.4 [QM - H₂O + H]⁺; 531.4 [QM - H₂O - Bu^t + H]⁺; 475.0 [QM - H₂O - 2Bu^t + H]⁺; 419.3 [QM - H₂O - 3Bu^t + H]⁺.

REFERENCES

- (a) C. D. Gutsche, M. Iqbal, K. C. Nam, K. See and I. Alam, Pure Appl. Chem. 60, 483 (1988); (b) C. D. Gutsche and K. C. Nam, J. Am. Chem. Soc. 110, 6153 (1988); (c) I. Alam, S. K. Sharma and C. D. Gutsche, J. Org. Chem. 59, 3716 (1994).
- M. Almi, A. Arduini, A. Casnati, A. Pochini and R. Ungaro Tetrahedron 45, 2177 (1989).
- (a) H. U. Wagner and R. Gomper, in *The Chemistry of Quino-noid Compounds*, edited by S. Patai, Chapt. 18. Wiley, London (1974);
 (b) L. J. Filar, *Tetrahedron Lett.*, 25, 9 (1960);
 (c) P. M. Neureiter, *J. Org. Chem.* 28, 3486 (1963);
 (d) W. H.
- Starnes, *J. Org. Chem.* **31**, 3164 (1966); (e) W. H. Starnes and J. J. Lauff, *J. Org. Chem.* **35**, 1978 (1970).
- S. Berthalon, J.-B. Regnouf-de-Vains and R. Lamartine, Tetrahedron Lett. 38, 8527 (1997).
- J.-B. Regnouf-de-Vains and R. Lamartine, Tetrahedron Lett. 37, 6311 (1996).
- 6. S. R. Angle and J. D. Rainier, J. Org. Chem. 57, 6883 (1992).
- D. W. Allen, M. R. Clench, A. Crowson and D. A. Leathard, J. Chromatogr. 629, 283 (1993).